Solar Radiation Forecasting Model
نویسندگان
چکیده
The prediction of hourly solar radiation data has important consequences in many solar applications (Markvart, Fragaki & Ross, 2006). Such data can be regarded as a time series and its prediction depends on accurate modeling of the stochastic process. The computation of the conditional expectation, which is in general non-linear, requires the knowledge of the high order distribution of the samples. Using a finite data, such distributions can only be estimated or fit into a pre-set stochastic model. Methods like Auto-Regressive (AR) prediction, Fourier Analysis (Dorvlo, 2000) Markov chains (Jain & Lungu, 2002) (Muselli, Poggi, Notton & Louche, 2001) and ARMA model (Mellit, Benghanem, Hadj Arab, & Guessoum, 2005) for designing the non-linear signal predictors are examples to this approach. The neural network (NN) approach also provides a good to the problem by utilizing the inherent adaptive nature (Elminir, Azzam, Younes, 2007). Since NNs can be trained to predict results from examples, they are able to deal with non-linear problems. Once the training is complete, the predictor can be set to a fixed value for further prediction at high speed. A number of researchers have worked on prediction of global solar radiation data (Kaplanis, 2006) (Bulut & Buyukalaca, 2007). In these works, the data is treated in its raw form as a 1-D time series, therefore the inter-day dependencies are not exploited. This article introduces a new and simple approach for hourly solar radiation forecasting. First, the data are rendered in a matrix to form a 2-D image-like model. As a first attempt to test the 2-D model efficiency, optimal linear image prediction filters (Gonzalez, 2002) are constructed. In order to take into account the adaptive nature for complex and non-stationary time series, NNs are also applied to the forecasting problem and results are discussed. BACKGROUND
منابع مشابه
Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting
In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...
متن کاملAssessment of Abarkouh Region to Construct Solar Sites
In recent decades, due to increasing prices of fossil fuels and environmental pollution resulting from the increased energy demand, researches on renewable energy sources have attracted lots of researcher’s attention. Limited investing sources and environmental issues are important factors effecting electricity generation sector. Minimizing costs and environmental damages are issues being consi...
متن کاملAssessment of Abarkouh Region to Construct Solar Sites
In recent decades, due to increasing prices of fossil fuels and environmental pollution resulting from the increased energy demand, researches on renewable energy sources have attracted lots of researcher’s attention. Limited investing sources and environmental issues are important factors effecting electricity generation sector. Minimizing costs and environmental damages are issues being consi...
متن کاملHourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks
In this work, the hourly solar radiation data collected during the period August 1, 2005–July 30, 2006 from the solar observation station in Iki Eylul campus area of Eskisehir region are studied. A two-dimensional (2-D) representation model of the hourly solar radiation data is proposed. The model provides a unique and compact visualization of the data for inspection, and enables accurate forec...
متن کاملDecision Technique of Solar Radiation Prediction Applying Recurrent Neural Network for Short-Term Ahead Power Output of Photovoltaic System
In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. It is difficult for getting to know accurate power output of PV system. In order to forecast the power output of PV system as accurate as possible, this paper proposes a decision te...
متن کاملA Novel 2-D Model Approach for the Prediction of Hourly Solar Radiation
In this work, a two-dimensional (2-D) representation of the hourly solar radiation data is proposed. The model enables accurate forecasting using image prediction methods. One year solar radiation data that is acquired and collected between August 1, 2005 and July 30, 2006 in Iki Eylul campus of Anadolu University, and a 2-D representation is formed to construct an image data. The data is in ra...
متن کامل